
BLIND SIGNATURES FOR BITCOIN TRANSACTION

ANONYMITY

WATSON LADD

Abstract. Bitcoin is [6] a peer-to-peer distributed currency system. Bitcoin

attempts to provide anonymity to users by cycling keys [6] however such pro-
tection is of limited value. [8] In this paper I present a new means of forming

transactions that prevents a sender of bitcoins from linking the public key of
the reciever to a transaction, requiring only a single additional option for what

data is signed.

1. The Problem

Let Alice pay Brian, Beth, Bob, and Brent. Brian, Beth, Bob, and Brent want
it to be impossible for Alice to link a recipient of the transactions she signs to one
of them. While she must know {Brent,Brian,Beth,Bob} and cannot pay them
different amounts without trivially linking the payments, it is possible for her to
not know the mapping between the set of people she payed and Bitcoin addresses
recieving payment.

2. The structure of Bitcoin

Much of this is from [6]. Bitcoin uses a globally known list of transactions, each
transaction being part of a block. Blocks contain a proof of work, along with a
hash of all previous blocks. A transaction has inputs and outputs,

Each coin is a list of transactions starting from the first owner of a block, who
mints the coin.

A transaction has inputs and outputs. The inputs are the outputs of previous
transactions, along with information enabling redemption as desribed in the next
section.

Bitcoin defends against double-spending by requiring a transaction to appear in
the global chain to be valid. The finder of a block is only rewarded with Bitcoins
if all transactions in the block are valid and do not result in double-spending.

The global chain poses challenges for anonymity. It is possible to rotate keys to
attempt to delink transactions, however as discussed in [8] in practice this does not
ensure anonymity. Tracking the flow of funds between keys offers clues as to which
keys are controlled by the same person, and so link different transactions together.

2.1. The Bitcoin Transaction Format. A Bitcoin transaction links inputs to
outputs. Each input and output consists of a value and a script. The script imposes

Date: March 4, 2012.
2010 Mathematics Subject Classification. 94A60.
Key words and phrases. electronic cash, Bitcoin, blind signatures.

1



2 WATSON LADD

a condition on any transaction using it as an input, namely that values must be
provided such that the script validates the transaction.

Scripts are sequences of instructions for a stack autonomon. Scripts are given
inputs specified in the output half of the transaction, and are then run on the
autonomon. Success is indicated by the last instruction terminating with a true
value on the stack.

Scripts are capable of stack manipulations, conditional execution, comparing
data on the stack, hashing, and validating signatures on the entire transaction or
just subparts of the transaction. Such partial validations are useful for various
kinds of contract. The extent of validation is set by the provider of the signature:
validation can include the outputs of the script or not.

Scripts can control what portions must be signed by use of the OP CODESEPERATOR
opcode. Execution of this opcode causes the prior portion of the script to be for-
gotten when OP CHECKSIG is executed.

The signatures are standard ECDSA signatures.

3. Necessary Modifications to Bitcoin

We need a new opcode OP CHECKHASHSIG, which given a signature, a public
key, and a hash confirms that the the signature is a signature of the hash under the
public key.

We also require a new signature type that blanks the index of the ouput of a
transaction being used as an input before signing. Note that in the existing Bitcoin
system identical outputs do not occur: this signature type, SIG FUNGIBLE, stil
protects the output script, so outputs must be carefully crafted to be indistinguis-
able with OP CODESEPERATOR

Neverthless this new signature type should be generated sparingly. It is however
essential to preserving anonymity: it enables multiple signatures to be made that
can grant access to indistinguishable pools of funds, while securing the recipient
from theft by those to whom the blockchain is sent.

4. The Protocol

4.1. Setup. Alice wishes to pay a total of T evenly divided among n participants
B1, . . . Bn. n is limited by the maximum size of a script in a transaction. Alice
generates an ECDSA public key A = xaP .

Alice generates a single transactions with n outputs, each of value T/n and
with a value script demanding i distinct signatures with key A: i− 1 of the signa-
tures are of hashes given by the redemer, and 1 is a signature of the script. Each
script has the same hash via the use of OP CODESEPERATOR, meaning that a
SIG FUNGABLE signature of one of the outputs is a SIG FUNGABLE singature
of any of the outputs.

4.2. Paying. Alice must pay B by signing a transaction B designed of a specified
form, without knowing what transaction was actually signed. This is achieved by
cut-and-choose in conjunction with blind signatures.

We use the protocol of [5] modified to include cut-and-choose. We make use of
the zero-knowledge proofs discussed in [2] and the Paillier cryptosystem of [7].

B begins by picking a Paillier scheme public key m of size between q6 and q7

and transmitting it to Alice. He also computes hashes H1, . . . Hk of k transactions,



BLIND SIGNATURES FOR BITCOIN TRANSACTION ANONYMITY 3

each using an output of the transaction generated in step 1 to pay Bitcoins to an
ECDSA public key that B wants to transfer Bitcoins to.

B has of course generated these public keys anew for each transaction.
B transmits to Alice commitments as in [2] to each Hi. Alice selects an integer

i between 1 and k and has B reveal all the other messages along with sufficent
information to determine the validty of the commitments. If B cheats, this will be
detected now.

Alice now selects a random ka in the range [1, q − 1] and transmits kaP to B.
B selects a random kb and computes kb(kaP ). Let r be the x-coordinate of that
point, and let za = 1/ka, zb = 1/kb.

B sends to Alice a = E((rzb) mod q), and b = E(Hizb mod q) along with a
proof as in [2] that a and b are Paillier encryptions of integers less then q and greater
then 1.

The Paillier system is additively homomorphic and permits efficient multiplation
of plaintexts by constants. Multiplying ciphertexts is addition of the plaintext
values, and exponentiation is multiplication by a constant.

Alice computes c = axazabzaE(dq) where d is a random integer in the range
[1, q5]. B decrypts c to obtain s, the other half of the signature, after taking it
modulo q. As the public key is large enough to prevent overflow this gives the
correct answer.

This scheme is a secure blind signature scheme as Alice learns nothing about the
value of Hi by the semantic security of the Paillier scheme. B learns nothing about
Alice’s private key beyond the signature thanks to the addition of dq to the result.

4.3. Redemption. All B’s now have their signatures. To redeem a signature B
simply pushes the transaction that was signed to the blockchain, selecting as output
the first unused output and giving it the previously used signatures and hashes of
the associated transactions, along with the until now unseen new signature for the
transaction.

Alice could attempt to swindle some of the B’s by issuing more signatures then
there are outputs or redeeming outputs herself, then seeing who complains about
not getting paid. But the complainant has ample proof of Alice’s trechery: there
are more signatures with the private key used for the transaction then there are
outputs. So long as this is not the case, payment goes through. The ability to
reveal that Alice is a cheat with proof thereof is sufficient deterrent to fraud on
Alice’s part.

Alice cannot determine the mapping between the public keys to which the Bit-
coins were transfered and the identities of the B’s because she handed out the
signatures blindly. Even if the temporary identies are linked to the B’s permanant
identies Alice remains in the dark: the revealed keys were never used and so remain
unlinked to identities.

As a result the specific transaction Alice engaged in remains unlinked from the
identity of the B’s. This delinks the source of funds from their eventual use.

5. Practicality and Further Work

The anonymity set is limited to all persons whom Alice pays using the same
transaction, and hence by limitations in the current Bitcoin implementation on the
size of transactions and their scripts. These limitations exist to limit the cost of
validating a block. [1]



4 WATSON LADD

This present scheme is neverthless useful. Many users of bitcoins obtain them
through exchanging USD for Bitcoins, a transaction that inevitably links identifying
information to the recipient address. The use of this protocol would prevent that
association from being made, provided the anonymity sets are large enough.

Further research is required on increasing the anonymity set, as well as methods
for anonymizing the senders of funds. Multiparty privacy-preserving set unions as
in [4] could be used for increasing the anonymity set, but require significantly more
communication and computation then the method presented here. They can also
be potentially extended to anonymize transactions of different face values: each
participant demonstrates that they will commit an input and an output of the
same face value to the union. They also require coordination amongst all recipients
of bitcoins in the anonymity set.

The limitations on the anonymity set that are most tight are on the size of vali-
dation scripts. A script that determines that n arguments are distinct requires size
O(n2) due to the deliberate absence of looping operations. Loops of bounded cost
would be an addition that would ameliorate this constraint, as would permitting
a search through the blockchain to see that a prior transaction was spent. The
second option is dangerous: scripts must be monotonic, and searching through the
blockchain is a potentially non-monotonic operation that could open the door to
double spending.

It may be possible to extend this method to providing a Bitcoin-based digital
cash scheme where double-spending would be prevented by revealing information
required to redeem a penalty. Such schemes were first discussed in [3]. Such a
scheme would not depend on a central party to restrict the amount of cash created,
provide very strong anonymity, and could be used to pay recipients willing to take
Bitcoins. It would however require significantly more changes to Bitcoin then the
current proposal, and would have to deal with the problem of having the ultimate
recipient of funds be unnamed.

References

[1] Satochi’s Client. https://github.com/bitcoin.

[2] Fabrice Boudot. Efficient proofs that a committed number lies in an interval. In Advances in
Cryptology EUROCRYPT 2000, Lecture Notes in Computer Science. Springer-Verlag, 2000.

[3] David Chaum, Amos Fiat, and Moni Naor. Untraceable electronic cash. In Shafi Goldwasser,

editor, Advances in Cryptology CRYPTO 88, volume 403 of Lecture Notes in Computer
Science, pages 319–327. Springer Berlin / Heidelberg, 1990.

[4] Lea Kissner and Dawn Song. Privacy-preserving set operations. Technical Report CMU-CS-
05-113, Carnegie Mellon University, February 2005. http://www.cs.cmu.edu/~leak/papers/
set-tech-full.pdf.

[5] An Metet. Blind signatures with dsa/ecdsa?, 2004. http://lists.virus.org/

cryptography-0404/msg00149.html.
[6] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008. http://bitcoin.

org/bitcoin.pdf.
[7] Pascal Paillier. Public-key cryptosystems based on composite degree residuoisity classes. In

Advances in Cryptology EUROCRYPT 1999, Lecture Notes in Computer Science. Springer-

Verlag, 1999.
[8] Fergal Reid and Martin Harrigan. An analysis of anonymity in the bitcoin system. 2011.

http://arxiv.org/pdf/1107.4524v1.pdf.

E-mail address: watsonbladd@gmail.com

https://github.com/bitcoin
http://www.cs.cmu.edu/~leak/papers/set-tech-full.pdf
http://www.cs.cmu.edu/~leak/papers/set-tech-full.pdf
http://lists.virus.org/cryptography-0404/msg00149.html
http://lists.virus.org/cryptography-0404/msg00149.html
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
http://arxiv.org/pdf/1107.4524v1.pdf

	1. The Problem
	2. The structure of Bitcoin
	2.1. The Bitcoin Transaction Format

	3. Necessary Modifications to Bitcoin
	4. The Protocol
	4.1. Setup
	4.2. Paying
	4.3. Redemption

	5. Practicality and Further Work
	References

